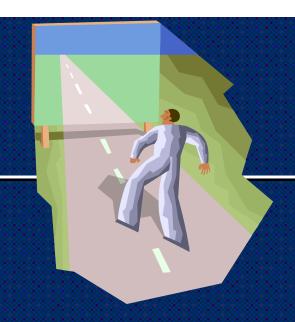
3-Tiered Approach to LTMO Overview & Training

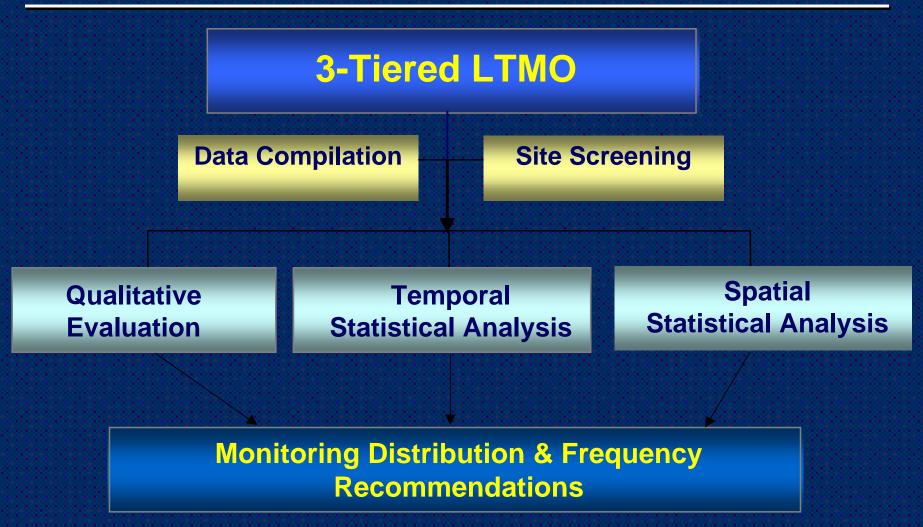
John Hicks, P.G.
Carolyn Nobel, Ph.D., P.E.
PARSONS

What's the Point?

Parsons'


3-Tiered LTMO
Approach combines a qualitative evaluation with temporal and spatial statistics to evaluate the distribution and frequency of groundwater sampling.

Outline


- 3-Tiered Approach Overview
- Data Requirements
- Site Screening
- Qualitative Evaluation
- Temporal Evaluation
- Spatial Evaluation
- Combined Evaluation
- Summary & Applications

3-Tiered Approach at A Glance

3-Tiered Methodology

- Data Requirements
- Site Screening
- Qualitative Evaluation
- Temporal Evaluation
- Spatial Evaluation
- 3-Tiered Summary

Data

Information

Solutions

Decisions

Data Requirements

- Description of Current Monitoring Program & Sampling Rationale
- Historical Monitoring Results
- Well Information
- Plume Source, Nature, and Extent
- Hydrogeologic Conditions
- Site Features
- Cleanup Goals/Regulatory Limits
- Logistical/Policy Considerations

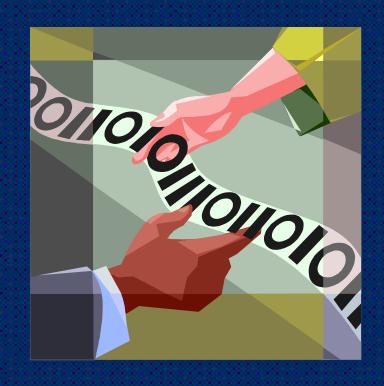
See Roadmap Table 2.2.1

Site Screening: Don't Even Go There?

- Adequate Data Availability & Format
- "Long Term Monitoring" Program & Adequately Characterized Site
- Greater than 10 Wells (preferably > 30) (spatial evaluation)
 - Same plume
 - Same aquifer/zone
 - Same timeframe
- At Least 4 Sampling Events Spaced Over 2 Years or More (temporal evaluation)
- Status Quo for Next Few Years
- Flexible Regulatory Environment

Site Screening Discussion: The Perfect Site

- Essential
- Wish List
- Deal Breakers


Case Study Introduction: Camp Stanley Storage Area, TX

- Simplified version for case study
 - Only north-central area plume
 - Less than ½ of total site monitoring wells included
 - Simplified hydrogeology
- U.S. Army Facility in operation since 1906 for the receipt, storage, and testing of munitions
- PCE solvent used as a degreasing agent
- Soil and groundwater impacted by PCE, TCE, and cis-1,2-DCE
- VOC plumes impacted the on-post and off-post water supply wells

Pre-Analysis Data Preparation/Organization

- Analytical results over time
- Chemical of Concern (COC) Statistical Analysis
- Monitoring Program Summary
 - "Basecase"
- Basemap

COC Results Over Time

- Case study analytical results available for future reference
- Allows for quick viewing of specific well and chemical results without database manipulation
- User friendly!

CS-D PCE Results over Time

	A	В	С	D	Е	F
1	Well ID	coc 🔻	Date	Qualifier	Result	MDL
3108	CS-D	PCE	12/4/91	ND	0.0	1
3109	CS-D	PCE	11/3/92	=	8.9	
3110	CS-D	PCE	5/26/94	=	82.0	
3111	CS-D	PCE	9/30/94	=	110.0	
3112	CS-D	PCE	12/19/94	=	120.0	
3113	CS-D	PCE	4/6/95	=	110.0	
3114	CS-D	PCE	6/14/95	=	64.0	
3115	CS-D	PCE	8/30/95	=	80.0	
3116	CS-D	PCE	12/12/95	=	110.0	
3117	CS-D	PCE	2/29/96	=	72.0	
3118	CS-D	PCE	12/13/00	=	63.6	0.04
3119	CS-D	PCE	3/20/01	=	63.5	0.04
3120	CS-D	PCE	6/13/01	=	110.0	1.6
3121	CS-D	PCE	9/13/01	=	120.0	1.1
3122	CS-D	PCE	3/14/02	=	100.0	0.36
3123	CS-D	PCE	6/18/02	=	110.0	0.2
3124	CS-D	PCE	9/9/02	=	170.0	0.67
3125	CS-D	PCE	12/12/02	=	180.0	0.5
3126	CS-D	PCE	3/20/03	=	180.0	0.33
3127	CS-D	PCE	6/19/03	=	200.0	0.67
3128	CS-D	PCE	9/18/03	=	220.0	0.5
3129	CS-D	PCE	12/10/03	=	230.0	1
3130	CS-D	PCE	3/11/04	=	160.0	0.5
3131	CS-D	PCE	6/16/04	=	180.0	0.4
3132	CS-D	PCE	6/16/04	=	170.0	0.5
3133	CS-D	PCE	9/8/04	=	170.0	0.5
3134	CS-D	PCE	9/8/04	=	160.0	0.67
3135	CS-D	PCE	12/7/04	=	140.0	1.7

See Table 1 For Case Study Data

COC Statistical Analysis

Primary COCs

coc	Total Samples ^{a/}	Range of Detects (μg/L) ^{b/}		Percentage of Detects	Percentage of Samples with MCL Exceedances	MCL (μg/L)	Number of Wells with Results	Number of Wells with Detections	Number of Wells with MCL Exceedances	
PCE	600	0	-	230.0	37.7%	16.0%	5	41	24	6
TCE	602	0	-	300.0	29.2%	15.9%	5	41	17	6
DCE12C	572	0	-	290.0	26.0%	8.9%	70	41	12	3
PB	277	0	-	250.0	59.6%	8.7%	15	32	27	9
DDCME	587	0	-	5.9	1.9%	1.9%	0	41	4	4
MTLNCL	586	0	-	9.6	25.4%	1.2%	5	41	36	6
CD	275	0	-	15.4	22.2%	1.1%	5	32	23	3
TBME	349	0	-	3.4	0.9%	0.9%	0	41	3	3
NI	276	0	-	216.0	47.5%	0.7%	100	32	27	2
BA	274	0	-	300.0	95.6%	0%	2000	32	32	
AS	279	0	-	30.0	57.7%	0%	50	32	29	
CU	280	0	-	180.0	55.0%	0%	1300	32	27	
CR	277	0	-	39.0	37.9%	0%	100	32	27	
BZME	390	0	-	40.4	28.2%	0%	1000	41	31	
TCLME	599	0	-	53.5	16.9%	0%	80	41	10	
DCE12T	609	0	-	12.0	14.9%	0%	100	41	9	
HG	276	0	-	1.3	11.6%	0%	2	32	17	
DCE11	584	0	-	1.0	4.3%	0%	70	41	11	
VC	548	0	-	1.3	4.2%	0%	2	41	11	
DBCME	587	0	-	4.5	1.4%	0%	60	41	4	

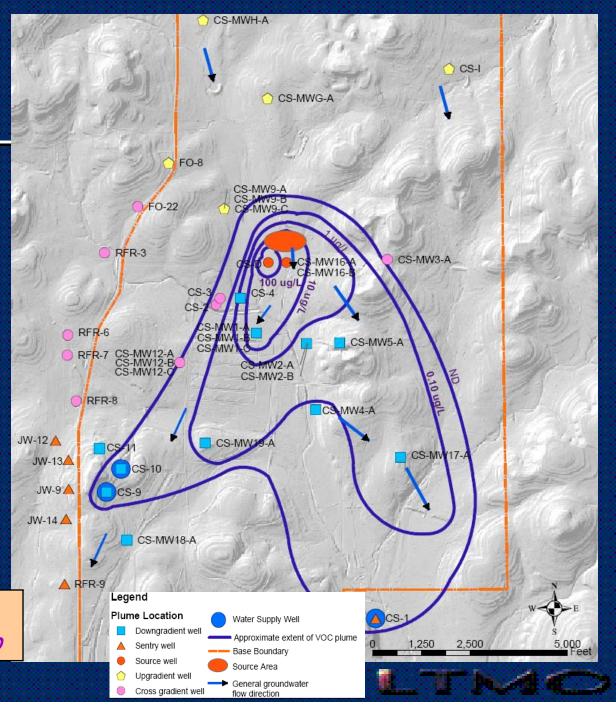
- Data summary snapshot
- Use to identify/ confirm primary COCs
- Analyze for all wells or by zone

See Table 2 for Case Study Data

Monitoring Program Summary

- "Basecase"
- Includes:
 - Wells to include in LTMO
 - Hydrogeologic Zone
 - Current Sampling Frequency
 - Sampling Date Range
 - Relative Plume Location

Well ID	Vertical Zone	Sampling Frequency	First Sampling Event	Most Recent Data	Plume Position
On Post Monitoring V	Vells				
CS-1	A	Quarterly	8/9/91	12/2/04	Sentry
CS-10	A	Quarterly	8/9/91	12/3/04	Downgradient
CS-11	A	Quarterly	8/9/91	12/3/04	Downgradient
CS-2	A	Quarterly	11/3/92	12/7/04	Cross gradient
CS-3	A	Quarterly	11/4/92	12/16/99	Cross gradient
CS-4	A	Quarterly	12/4/91	12/7/04	Downgradient
CS-9	A	Quarterly	8/9/91	12/3/04	Downgradient
CS-D	A	Quarterly	12/4/91	12/7/04	Source
CS-I	A	Quarterly	11/4/92	11/29/04	Up gradient
CS-MW12-C	C	Quarterly	12/16/02	12/7/04	Downgradient
CS-MW12-B	В	Quarterly	12/16/02	12/7/04	Downgradient
CS-MW12-A	A	Quarterly	12/16/02	12/7/04	Cross gradient
CS-MW16-B	В	Quarterly	9/16/03	12/9/04	Downgradient
CS-MW16-A	A	Quarterly	9/30/94	12/3/04	Source
CS-MW17-A	A	Quarterly	9/12/02	11/29/04	Downgradient
CS-MW18-A	A	Quarterly	9/12/02	12/7/04	Downgradient
CS-MW19-A	A	Quarterly	9/12/02	12/7/04	Downgradient
CS-MW1-C	C	Quarterly	3/25/03	11/30/04	Downgradient
CS-MW1-B	В	Quarterly	3/25/03	11/30/04	Downgradient
CS-MW1-A	A	Quarterly	9/8/99	11/30/04	Downgradient
CS-MW2-B	В	Quarterly	6/17/03	12/1/04	Downgradient
CS-MW2-A	A	Quarterly	9/9/99	12/1/04	Downgradient
CS-MW3-A	A	Quarterly	6/14/01	11/29/04	Cross gradient
CS-MW4-A	A	Quarterly	6/14/01	12/1/04	Downgradient
CS-MW5-A	A	Quarterly	6/14/01	12/3/04	Downgradient
CS-MW9-C	С	Quarterly	6/14/01	11/29/04	Downgradient
CS-MW9-B	В	Quarterly	6/14/01	11/29/04	Downgradient
CS-MW9-A	A	Quarterly	6/14/01	11/29/04	Up gradient
CS-MWG-A	A	Quarterly	11/3/92	11/29/04	Up gradient
CS-MWH-A	A	Quarterly	11/4/92	11/29/04	Up gradient
Off Post Monitoring		•			
FO-22	A	Annually	9/18/01	12/16/04	Cross gradient
FO-8	A	Annually	3/19/02	3/4/04	Up gradient


See Table 3 & Handout For Case Study Data

Basemap

- Spatial representation of monitoring network
- Well type/zone delineation
- General groundwater flow direction & plume location

See Figure 1 & Handout For Case Study Basemap

Site Conceptual Model

- Aquifer Material: sand and silty sand
- Groundwater Flow Direction: SW to SE
- Groundwater Flow Velocity: avg 0.5 ft/day
- Potential Receptor Locations: mixed ranching and residential S and W of plume (off-post domestic and stock wells)
- Unique Site Conditions: source area SVE, water supply wells, bedrock high channels groundwater flow, adjacent property owners sensitive to off-post migration

Qualitative Evaluation Methodology

DATA:

- Site characterization
- Monitoring results
- Monitoring Network DQOs, etc.

INFORMATION:

Value of each well in big picture context

SOLUTION:

- Recommend:
 - Well retention or removal
 - Optimal sampling frequency
- Provide Rationale

Requires
Experienced
Environmental
Scientist Familiar
With Site

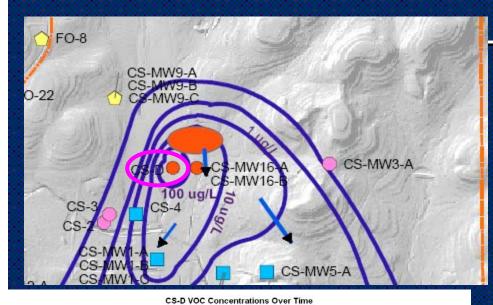
Qualitative Well Spatial Distribution Decision Logic

Reasons for Retaining or Adding a Well in a Monitoring Network	Reasons for Removing a Well From a Monitoring Network
Well is needed to further characterize the site or monitor changes in contaminant concentrations through time	Well provides spatially redundant information with a neighboring well (e.g., same constituents, and/or short distance between wells
Well is important for defining the lateral or vertical extent of contaminants	Well has been dry for more than two years and there is no expectation for the water levels to recovery in the foreseeable future.
Well is needed to monitor water quality at a compliance point or receptor exposure point (i.e., sentinel well for municipal wells)	Contaminant concentrations are consistently below laboratory detection limits or cleanup goals
Well is important for defining background water quality	

Qualitative Monitoring Frequency Decision Logic

Reasons for Increasing Sampling Frequency	Reasons for Decreasing Sampling Frequency
Groundwater velocity is high	Groundwater velocity is low
Change in concentration would significantly alter a decision or course of action	Change in concentration would not significantly alter a decision or course of action
Well is close to source area or operating remedy	Well is farther from source area or operating remedy
Cannot predict if concentrations will change significantly over time or there have been recent irregular or contradictory data for which there is no ready explanation	Concentrations are not expected to change significantly over time, or contaminant levels have been below cleanup objectives for some period of time

Case Study Application: Qualitative Evaluation


		T			Qualitative Analysis	
Well ID	Current Sampling Frequency	Remove	Retain	Monitoring Frequency Recommendation	Rationale	
On Post Monitoring Wells				•		
CS-1	Quarterly		X	Semi-annual	On-post drinking water supply; no nearby upgradient well	s for early warning
CS-10	Quarterly		X	Semi-annual	On-post drinking water supply; no nearby upgradient well	
CS-11	Quarterly		X	Annual	Serves as early warning of potential off-post migration	, ,
CS-2	Quarterly		X	Biennial	Cross-gradient well defines plume boundary over time	
CS-3	Quarterly	X		Remove	Spatially redundant with CS-2, not recently sampled	
CS-4	Quarterly	X		Remove	Spatially redundant with CS-2	
CS-9	Quarterly		X	Semi-annual	On-post drinking water supply; no nearby upgradient well	s for early warning
CS-D	Quarterly					
CS-I	Quarterly	X		Remove	MWG and MW9 provide sufficient upgradient data	
CS-MW12-C	Quarterly		X	Biennial	Vertical sentry well, historically non-detect	
CS-MW12-B	Quarterly		X	Biennial	Vertical sentry well, historically non-detect	
CS-MW12-A	Quarterly					
CS-MW16-B	Quarterly		X	Semi-annual	Monitors vertical migration of contaminants beneath sour	e; only 1.25 yrs of LTM
CS-MW16-A	Quarterly		X	Semi-annual	Monitors effectiveness of source area remediation	_
CS-MW17-A	Quarterly		X	Annual	Along inferred plume flowpath; good indicator of plume s	Recomme
CS-MW18-A	Quarterly		X	Annual	Serves as early warning of potential off-post migration	1 Vecomme
CS-MW19-A	Quarterly		X	Annual	Along inferred plume flowpath; good indicator of plume s	
CS-MW1-C	Quarterly		X	Biennial	Vertical sentry well, historically < PQL	and mo
CS-MW1-B	Quarterly		X	Biennial	Vertical sentry well, historically non-detect	
CS-MW1-A	Quarterly		**	B: : :		£
CS-MW2-B	Quarterly		X	Biennial	Vertical sentry well, historically non-detect	for case
CS-MW2-A	Quarterly		X	Biennial	Below MCLs for last 12 events	101 00.00
CS-MW3-A CS-MW4-A	Quarterly	v	X	Biennial	Cross-gradient well defines plume boundary over time	
	Quarterly	X	37	Remove	COCs consistently < MCLs; not on plume flowpath	on qu
CS-MW5-A CS-MW9-C	Quarterly Quarterly		X	Biennial Biennial	COCs consistently < MCLs; very little temporal variation Vertical sentry well. historically non-detect	•
CS-MW9-B	Quarterly		X	Biennial	Vertical sentry well, historically non-detect Vertical sentry well, historically non-detect or < PQL	-
CS-MW9-B CS-MW9-A	Quarterly		X	Biennial	Monitors upgradient groundwater quality	_
CS-MWG-A	Quarterly		X	Biennial	Monitors upgradient groundwater quality	
CS-MWH-A	Quarterly Ouarterly		Α	Dictillat	ivionitors apgradient groundwater quanty	
Off Post Monitoring Wells					77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FO-22 FO-8	Annually	X		Remove	Hydraulically upgradient to cross-gradient; historically no	n-detect
	Annually	X	47	Remove	MWG and MW9 provide sufficient upgradient data	
JW-12	Annually	-	X	Annual	Downgradient property boundary sentry well	
JW-13 JW-14	Annually	-	X	Annual	Downgradient property boundary sentry well	
JW-14 JW-9	Quarterly		X	Annual	Downgradient property boundary sentry well	
RFR-3	Quarterly	v	X	Annual	Downgradient property boundary sentry well	innerthematics of the stables
RFR-5	Quarterly	X	v	Remove	Resume LTM if CS-2 indicates significant westerly migrat	ion, otherwise of no value
RFR-7						
	San Tal	5/0	1 04	ad Hana	dout for atry well atry well	-
RFR-8 RFR-9	JEE IUL	JIE *	t ul	iu muric	TOUT TOP atry well	
KFK-9					try well; other wells	provide early warning

end removal/retention nitoring frequency study wells based alitative factors. ist rationale.

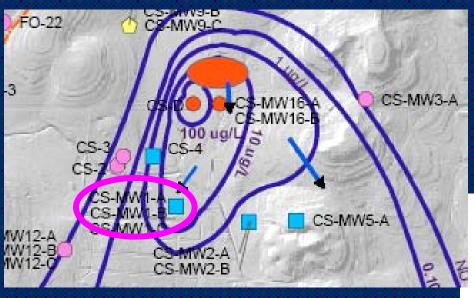
Qualitative Evaluation Template

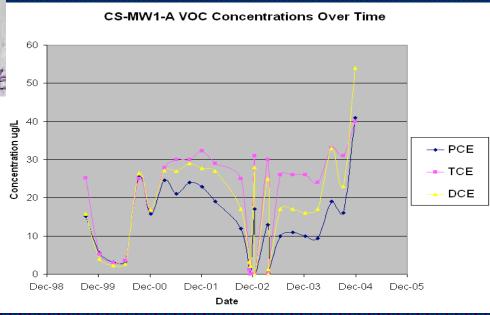
CS-D Illustration

- Source area well
- High VOC concentrations >> MCL
- Monitors effectiveness of source area remediation
- RETAIN
- Semi-Annual frequency

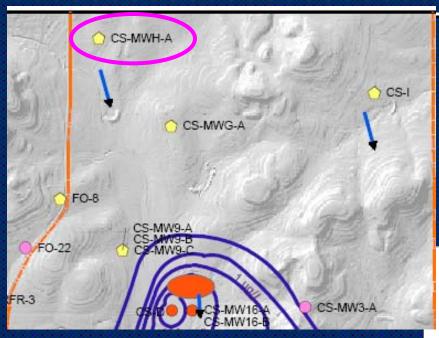
See Figure 3 & Handout for Case Study Wells VOC Results

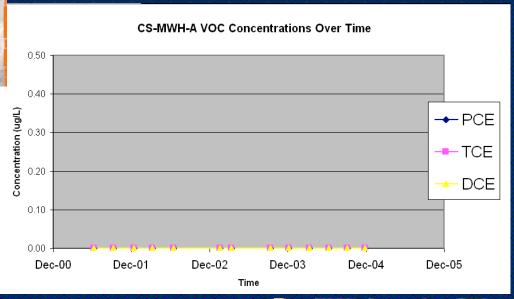
CS-MW12-A Illustration




Date

- Cross gradient well
- COCs historically ND
- Defines plume boundary over time
- RETAIN
- Biennial frequency




CS-MW-1A Illustration

CS-MWH-A Illustration

Temporal Statistical Evaluation Methodology

DATA:

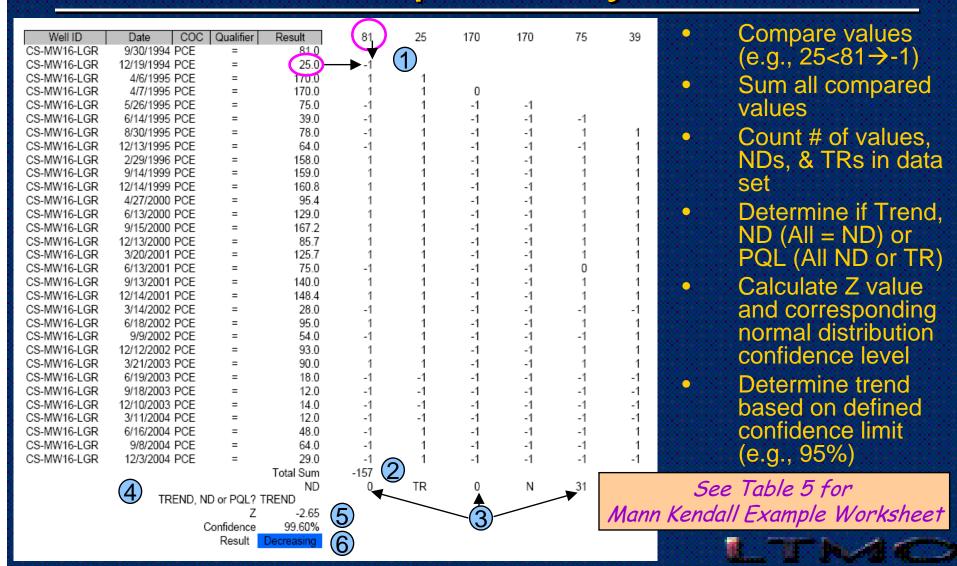
- >4 sampling results over time
- Well/plume location & GW flow direction
- Chemical concentration

INFORMATION:

- Mann-Kendall Trend analysis
- Automated process

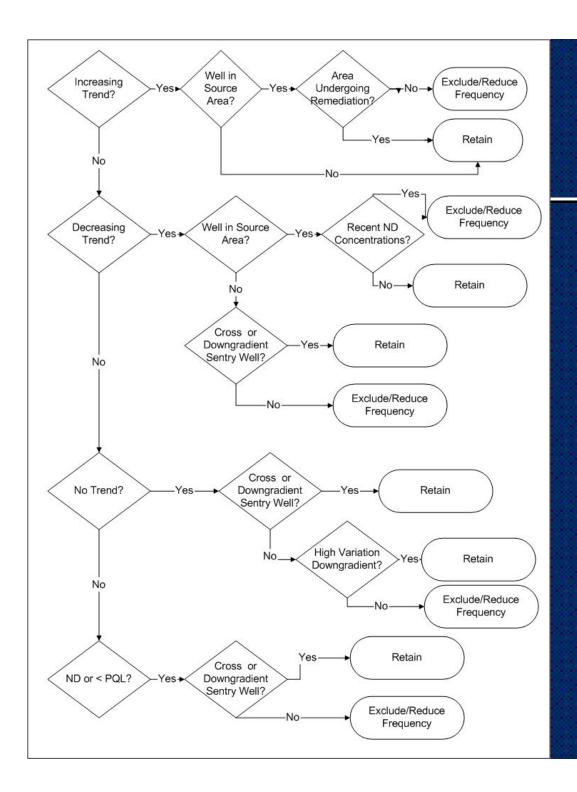
SOLUTION:

Recommend retention or removal/reduction based on decision rationale



Mann-Kendall Benefits, Limitations & Issues

- Nonparametric analysis (no data distribution required)
- Consistent sampling not required
- Uses relative magnitudes
 – less sensitive to outliers
- Allows use of NDs
- Potential "spurious trends" with all ND or Trace values
- >4 values required for robust trends


Mann Kendall Trend Analysis Example Analysis

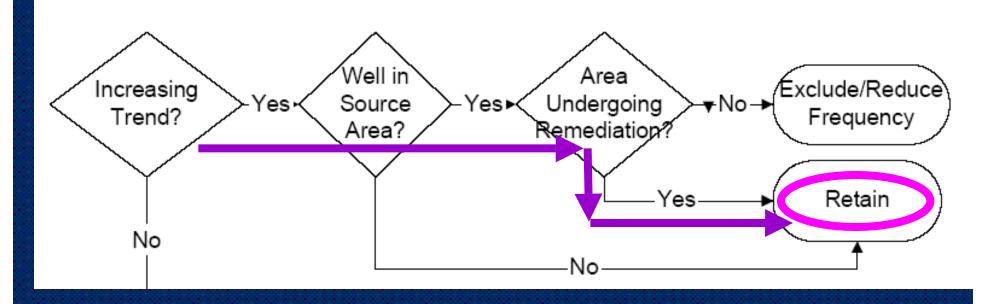
3-Tiered Trend Analysis Options

= No statistically significant No Trend temporal trend in concentrations. = Statistically significant increasing Increasing trend in concentrations. Statistically significant decreasing Decreasing trend in concentrations. = Constituent has not been Slassifications detected during history of monitoring at indicated well. ND = Concentrations consistently not detected or trace (below practical quantitation limit) PQL

Temporal Trend

Decision Rationale Flowchart

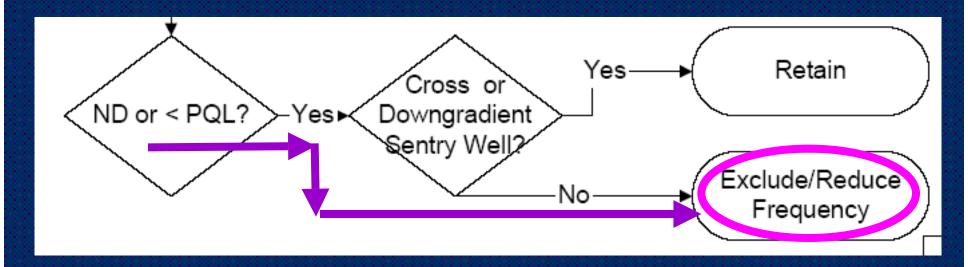
See Figure 3 & Handout For Temporal Trend Rationale Flowchart



Case Study Application: Temporal Evaluation

Well ID	Realitive Plume Location	PCE	TCE	cis-1,2-DCE	Remove/ Reduce	Retain		Rationale	
On Post Monitoring Wells	•	•	•				•		
CS-1	Sentry	PQL	No Trend	ND		X	Downgradient sentry well; one lo	ow detection of TCE in 2000	
CS-10	Downgradient	PQL	ND	ND	X		Downgradient; COCs PQL or NI	D	
CS-11	Downgradient	PQL	PQL	PQL	X		Downgradient; COCs PQL		
CS-2	Cross gradient	No Trend	PQL	ND	X		Cross gradient; only trace PCE s		
CS-3	Cross gradient	No Trend	ND	ND	X			ed since 1999 (trace PCE concentrations)	
CS-4	Downgradient	No Trend	Increasing	Increasing		X	Increasing TCE and DCE downg		
CS-9	Downgradient	PQL	ND	ND	X		Downgradient; lead consistently	<5ug/L; all other ND or PQL.	
CS-D	Source	Increasing	Increasing	Increasing		X			
CS-I	Up gradient	PQL	PQL	ND	X		Up gradient well; COCs PQL or	ND	
CS-MW12-C	Downgradient	ND	ND	ND	X		Downgradient (lower aquifer) we	ell historically ND	
CS-MW12-B	Downgradient	ND	ND	ND	X		Downgradient (lower aquifer) w	ell historically ND	
CS-MW12-A	Cross gradient	ND	ND	ND	X				
CS-MW16-B	Downgradient	No Trend	No Trend	No Trend		X	Variable PCE, TCE, and DCE >	Recommend re	duca/ramova or
CS-MW16-A	Source	Decreasing	Decreasing	Decreasing		X	Decreasing TCE, PCE, and DCE	IVECOIIIIIEIIA IE	duce/remove or
CS-MW17-A	Downgradient	PQL	PQL	ND	X		Downgradient ND or PQL		
CS-MW18-A	Downgradient	PQL	PQL	ND	X		Downgradient; COCs historical	retain for cas	se study wells
CS-MW19-A	Downgradient	PQL	ND	ND	X		Downgradient; COCs historical	1010	o cracy meno
CS-MW1-C	Downgradient	PQL	PQL	Decreasing	X		Downgradient (lower aquifer) w	based on tren	od roculte and
CS-MW1-B	Downgradient	ND	ND	ND	X		Downgradient (lower aquifer) w	Dased on their	iu results ariu
CS-MW1-A	Downgradient	No Trend	Increasing	No Trend		X			, ,
CS-MW2-B	Downgradient	ND	ND	ND	X		Downgradient (lower aquifer) w	decision f	lowchart
CS-MW2-A	Downgradient	Decreasing	Decreasing	Decreasing	X		Decreasing trends in downgradie	4001010111	10 World C
CS-MW3-A	Cross gradient	PQL	PQL	ND	X		Cross gradient;COCs ND or PQI	Lict rot	tionale.
CS-MW4-A	Downgradient	PQL	PQL	PQL	X		Downgradient; COCs PQL	Listra	lionale.
CS-MW5-A	Downgradient	No Trend	No Trend	No Trend	X		Stable COCs downgradient		
CS-MW9-C	Downgradient	ND	ND	ND	X		Downgradient (lower aquifer) we	ell; COCs ND or PQL	
CS-MW9-B	Downgradient	ND	ND	PQL	X		Downgradient (lower aquifer) we	ell; COCs ND or PQL	
CS-MW9-A	Up gradient	PQL	PQL	ND	X		Up gradient; COCs historically N	ND or PQL	
CS-MWG-A	Up gradient	ND	ND	ND	X		Upgradient well; COCs ND		
CS-MWH-A	Up gradient	ND	ND	ND	X				
Off Post Monitoring Wells	<u>'</u>		•				·		
FO-22	Cross gradient	ND	ND	ND	X		Cross gradient; COCs historical	ly ND	
FO-8	Up gradient	<4Meas	<4Meas	<4Meas	Not A	nalyzed	No recommendation due to limit	ed data over time.	
JW-12	Sentry	<4Meas	<4Meas	<4Meas	Not A	nalyzed	No recommendation due to limit	c T / /	
JW-13	Sentry	ND	ND	ND		X	Downgradient sentry well; COC	See Lable	6 & Handout
JW-14	Sentry	PQL	ND	ND		X	Downgradient sentry well; COC		
JW-9	Sentry	PQL	ND	PQL		X	Downgradient sentry well; COC	fon Tomponal	Trend Results
RFR-3	Cross gradient	PQL	ND	ND	X		Cross gradient; COCs historicall	i or Temporal	Trend Results
RFR-6	Cross gradient	ND	ND	ND	X		Cross gradient; COCs historicall	l	
RFR-7	Cross gradient	ND	ND	ND	X		Cross gradient; COCs historicall	& Evaluation	on Template
RFR-8	Cross gradient	ND	ND	ND	X		Cross gradient; COCs historicall	G E Varadirio	The Complaint
RFR-9	Sentry	ND	ND	ND		X	Downgradient sentry well; COC	s historically ND	

CS-D → RETAIN


Well ID	Realitive Plume Location	PCE	TCE	cis-1,2-DCE
CS-D	Source	Increasing	Increasing	Increasing

CS-MW12-A→ EXCLUDE/REDUCE FREQUENCY

Well ID	Realitive Plume Location	PCE	TCE	cis-1,2-DCE
	Cross			
CS-MW12-A	gradient	ND	ND	ND

CS-MW1-A

Well ID	Realitive Plume Location	PCE	TCE	cis-1,2-DCE	
CS-MW1-A	Downgradient	No Trend	Increasing	No Trend	

CS-MWH-A

Well ID	Realitive Plume Location	PCE	TCE	cis-1,2-DCE
CS-MWH-A	Up gradient	ND	ND	ND
4				

Spatial Statistics Evaluation Methodology

DATA

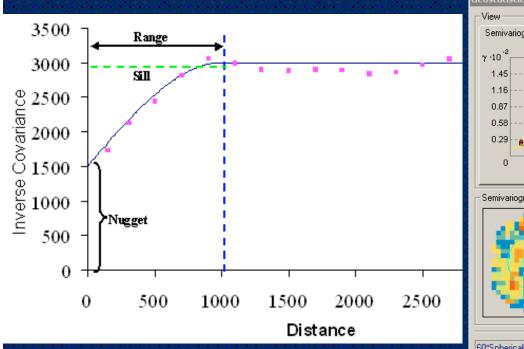
- Spatial "Snapshot" of Plume
 - Most recent chemical concentrations
 - Indicator chemical
 - Wells in same zone

INFORMATION:

- Geostatistical (Kriging) Evaluation
 - Develop spatial model (semivariogram)
 - Calculate Kriging predicted standard error metric for each well
- Conducted Using ArcGIS Geostatistical Analyst Extension or other geostatistical analysis program

SOLUTION:

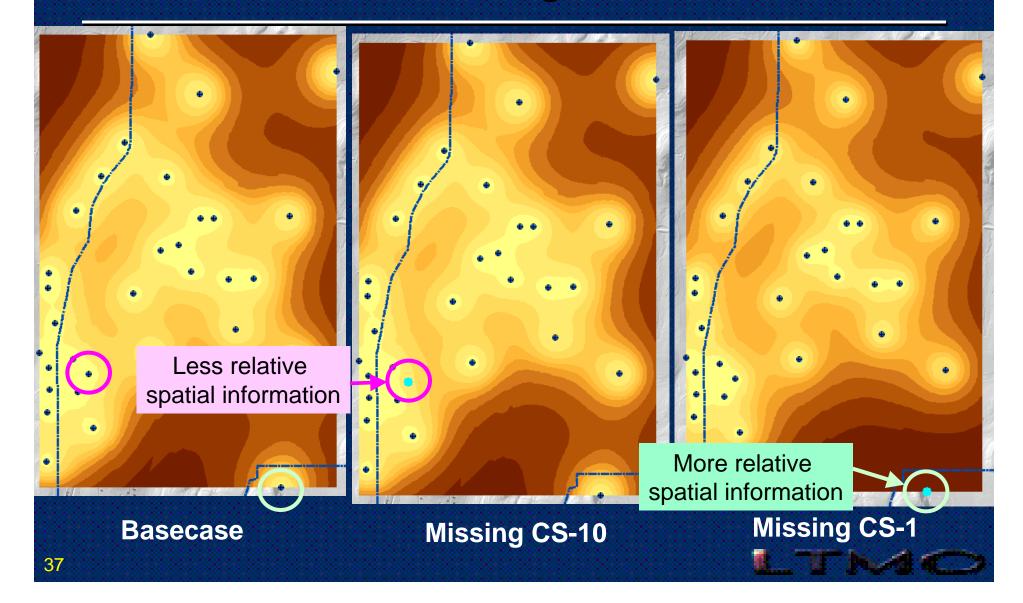
 Recommend removal or retention based on relative spatial value of information from each well


Requires
Experience with
Geostatistics &
Semivariogram
Development

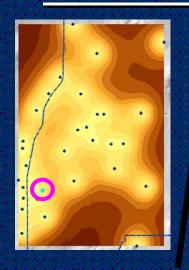
Spatial Statistics Well Selection & Data Preparation

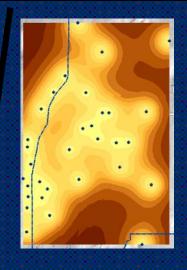
- Select spatial evaluation well set
 - Same zone
 - Same time
- Define "Indicator" Chemical
 - COC with highest concentrations/spatial extent
 - Sum or weighted sum of several COCs
 - Multiple COC Analyses
- Develop "Best-Fit" Semivariogram

Semivariogram Model Development

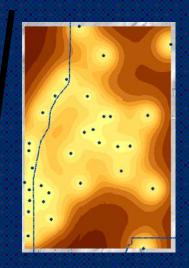


"Best fit" curve Semivariogram | Covariance Major Range 💀 🥖 Circular Spherical 1700 Tetraspherical Pentaspherical - Anisotropy Exponential Gaussian Minor Range Rational Quadratic Hole Effect K-Bessel J-Bessel Stable Distance, h ·10 -2 Partial Sill **□** 0 60 Semivariogram/Covariance Surface Show Search Direction ✓ Nugget **■** 0 9 Error Modelina ✓ Shifts Bandwidth (lags): Semiyariogram/Covariances: Lag Size: 300 Number 1 of Lags: 60*Spherical(1700)+9*Nugget Cancel < Back Finish


Idealized Semivariogram Model Case Study Semivariogram Model



Calculate Predicted Standard Error for Basecase & "Missing Well" Scenarios



Calculate Spatial Metrics for Each Well

Missing CS-10/Basecase = 1.001

Median Missing Well Grid

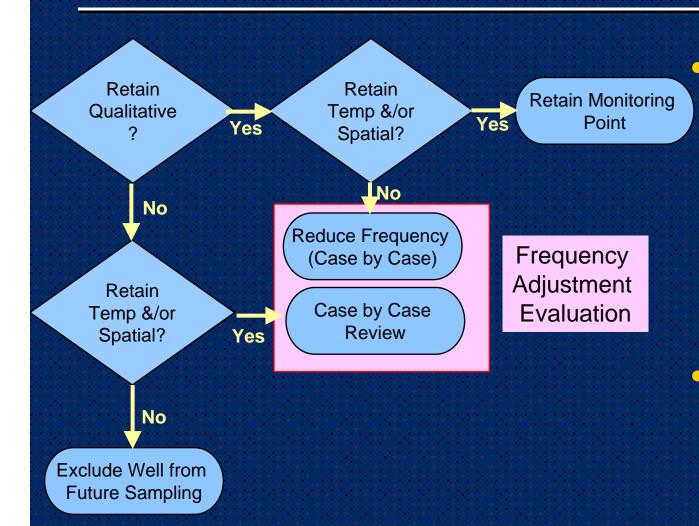
Median Basecase Grid = Spatial Metric

Missing CS-1/Basecase = 1.01

Case Study Wells: Spatial Evaluation

Well ID	Spatial Metric	Kriging Ranking	Remove/ Exclude	Retain/ Add
CS-4	0.99930	1	X	7 1 1 1 1
CS-MW2-A	0.99956	2	X	
CS-MW1-A	0.99964	3	Λ	
CS-MW1-A	0.99986	4	X	
JW-13	0.99987	5	X	
JW-9	0.99988	6	X	
JW-14	0.99990	7	X	
JW-12	1.00000	8.5	X	
RFR-8	1.00000	8.5	X	
CS-9	1.00007	10		
RFR-7	1.00008	11		
CS-D	1.00011	12		
CS-10	1.00067	13		
RFR-6	1.00229	14		
CS-MW16-A	1.00335	15		
CS-2	1.00471	16		
FO-22	1.00471	17		
CS-I	1.00498	18		
CS-1	1.00551	19		
CS-MW5-A	1.00854	20		
RFR-9	1.00868	21		
CS-MW18-A	1.01150	22		X
CS-MW9-A	1.01706	23		X
CS-MWH-A	1.01766	24		
FO-8	1.01913	25		X
CS-MW12-A	1.02196	26		X
RFR-3	1.02197	27		X
CS-MW3-A	1.02380	28		X
CS-MW17-A	1.02402	29		X
CS-MW4-A	1.02595	30		X
CS-MW19-A	1.02990	31		X
CS-MWG-A	1.03843	32		X

???


Based on Kriging Metric,
Recommend remove, retain or
no recommendation
(intermediate range) for case
study wells based on relative
value of spatial information

???

See Table 8 and Handout for Spatial Results & Evaluation Template

Combined Evaluation Summary

Combine 3
Analyses to
Determine
Final
Distribution
and Frequency
Recommendation

Qualitative
Verified &
Refined by
Quantitative

Case Study Evaluation: Combined Evaluation Summary

		Summary		valuation	Spatial E	Evaluation	Temporal	ation	Qualitative Evalu	(Current Sampling	
Rationale	Recommended Monitoring Frequency	Retain	Remove	Retain	Remove/ Reduce	Retain	Remove/ Reduce	Frequency	Retain	Remove	Frequency	Well ID
											U s	On Post Monitoring We
Statistics confirm qualitative evaluation	Semi-Annual	x				х		Semi-annual	x		Quarterly	CS-1
Qualitative factor (water supply well) overrides statistic r	Semi-Annual	x					x	Semi-annual	x		Quarterly	CS-10
Reduce frequency based on statistics	Biennial	x			х		x	Annual	x		Quarterly	CS-11
Statistics confirm qualitative evaluation	Biennial	x					х	Biennial	x		Quarterly	CS-2
Statistics confirm qualitative evaluation	Remove		х	cluded	Not In		х	Remove		х	Quarterly	CS-3
		х			х	х		Remove		х	Quarterly	CS-4
ormouloto final	s –	х			d/		х	Semi-annual	х		Quarterly	CS-9
ormulate final											Quarterly	CS-D
removal/reten	for		х				х	Remove		х	Quarterly	CS-I
	_	х		cluded	Not In		х	Biennial	x		Quarterly	CS-MW12-C
requency base	_ f:	х		cluded	Not In		х	Biennial	х		Quarterly	CS-MW12-B
•	_										Quarterly	CS-MW12-A
temporal,	s	х		cluded	Not In	х		Semi-annual	x		Quarterly	CS-MW16-B
recommenda	Si	х				х		Semi-annual	х		Quarterly	CS-MW16-A
		х		х			х	Annual	х		Quarterly	CS-MW17-A
Summary dec		x		х		0	х	Annual	x		Quarterly	CS-MW18-A
		х		х			х	Annual	x		Quarterly	CS-MW19-A

Formulate final recommendations for removal/retention and monitoring frequency based on qualitative, temporal, and spatial recommendations, and the Summary decision rationale

See Table 9 & Handout for Combined Results & Summary Template

Not Included

CS-MW1-C

Quarterly

Quarterly
Quarterly
Quarterly

Ouarterly

CS-D Combined Summary

	Current Compline	Qualitative Evaluation			Temporal Evaluation		Spatial Evaluation	
Well ID	Current Sampling Frequency	Remove	Retain	Frequency	Remove/ Reduce	Retain	Remove	Retain
CS-D	Quarterly		Х	Semi-annual		Х		

RETAIN well @ Semi-Annual Sampling Frequency: Temporal statistics confirm qualitative evaluation

CS-MW12-A Combined Summary

	Current Sampling	Qualitative Evaluation			Temporal Evaluation		Spatial Evaluation	
Well ID	Frequency	Remove	Retain	Frequency	Remove/ Reduce	Retain	Remove	Retain
CS-MW12-A	Quarterly		X	Biennial	Х			х

RETAIN well @ Biennial Sampling Frequency:
Statistics confirm qualitative evaluation

CS-MW1-A Combined Summary

	Charact Consuling	Qualitative Evaluation			Temporal Evaluation		Spatial Evaluation	
Well ID	Current Sampling Frequency	Remove	Retain	Frequency	Remove/ Reduce	Retain	Remove	Retain
CS-MW1-A	Quarterly		Х	Annual		Х	Х	

CS-MWH-A Combined Summary

	Current Seconding	Qualitative Evaluation			Temporal Evaluation		Spatial Evaluation	
Well ID	Current Sampling Frequency	Remove	Retain	Frequency	Remove/ Reduce	Retain	Remove	Retain
CS-MWH-A	Quarterly	Х		Remove	Х			х

LTMO Case Study Results

	Original Network	Revised Network
Total Wells	41	35
Biennial	0	20
Annual	8	9
Semi-Annual	0	6
Quarterly	33	0
Total Sampling Events	140	31

77.9% Potential Monitoring Reductions in Sampling Events per Year

3-Tiered LTMO Summary

- Qualitative Evaluation
 - Experienced geologist big-picture analysis
- Temporal Statistical Evaluation
 - Mann Kendall trend analysis
 - Decision rationale
- Spatial Statistical Evaluation
 - Geostatisical Kriging relative predicted error analysis

3-Tiered LTMO

Combines three evaluations to optimize the distribution and frequency of groundwater sampling.

Applications

- 20+ Sites in Past 3 Years
- 10 to 300+ Well Monitoring Networks
- Identified 13% 83% Reductions*
- On Average Identified Over 1/3 Reductions*
- Results Highly Dependant on Site Conditions
 - No recent optimization and more frequent current sampling -> higher identified reductions
 - Sites with small number of wells can still lead to significant relative reductions

^{*}Reduction in average sampling events per year

Thank you!

PARSONS' 3-Tiered Approach to LTMO

For more information please contact:

Carolyn Nobel @parsons.com (303) 764-8866

John Hicks John.Hicks@parsons.com (303) 764-1941

